
 docker CLI & Dockerfile Cheat Sheet

Table of Contents

Introduction

Container Architecture

Introduction	 1
1.	docker	CLI	 2
	 1.1	Container	Related	Commands	 2
	 1.2	Image	Related	Commands	 4
	 1.3	Network	Related	Commands	 5
	 1.4	Registry	Related	Commands	 6
	 1.5	Volume	Related	Commands	 6
	 1.6	All	Related	Commands	 6
2.	Dockerfile	 6
About	the	Authors	 8

Containers	allow	the	packaging	of	your	application	(and	everything	that	you	need	to	run	it)	
in	a	“container	image”.	Inside	a	container	you	can	include	a	base	operating	system,	libraries,	
files	and	folders,	environment	variables,	volume	mount-points,	and	your	application	binaries.	

A	“container	image”	is	a	template	for	the	execution	of	a	container	—	It	means	that	you	can	
have	multiple	containers	running	from	the	same	image,	all	sharing	the	same	behavior,	which	
promotes	the	scaling	and	distribution	of	the	application.	These	images	can	be	stored	in	a	
remote	registry	to	ease	the	distribution.

Once	a	container	is	created,	the	execution	is	managed	by	the	container	runtime.	You	can	
interact	with	the	container	runtime	through	the	“docker”	command.	The	three	primary	
components	of	a	container	architecture	(client,	runtime,	&	registry)	are	diagrammed	below:

Runtime

Daemon

RegistryClient

Image registryImagesContainersRemote API

Local

or

1.	docker	CLI

1.1	Container	Related	Commands

Examples	
All	examples	shown	work	in	Red	Hat	Enterprise	Linux	

1.	Run	a	container	in	interactive	mode:
	 #Run	a	bash	shell	inside	an	image
$ docker run -it rhel7/rhel bash
	 #Check	the	release	inside	a	container
[root@.../]# cat /etc/redhat-release

2.	Run	a	container	in	detached	mode:
$ docker run --name mywildfly -d -p 8080:8080 jboss/wildfly

3.	Run	a	detached	container	in	a	previously	created	container	network:
$ docker network create mynetwork
$ docker run --name mywildfly-net -d --net mynetwork \
 -p 8080:8080 jboss/wildfly

4.	Run	a	detached	container	mounting	a	local	folder	inside	the	container:
$ docker run --name mywildfly-volume -d \
 -v myfolder/:/opt/jboss/wildfly/standalone/deployments/ \
 -p 8080:8080 jboss/wildflyjboss/wildfly

5.	Follow	the	logs	of	a	specific	container:
$ docker logs -f mywildfly
$ docker logs -f [container-name|container-id]

6.	List	containers:
	 #	List	only	active	containers
$ docker ps
	 #	List	all	containers
$ docker ps -a

7.	Stop	a	container:
	 #	Stop	a	container
$ docker stop [container-name|container-id]
	 #	Stop	a	container	(timeout	=	1	second)
$ docker stop -t1

8.	Remove	a	container:
	 #	Remove	a	stopped	container
$ docker rm [container-name|container-id]
	 #	Force	stop	and	remove	a	container
$ docker rm -f [container-name|container-id]
	 #	Remove	all	containers
$ docker rm -f $(docker ps-aq)
	 #	Remove	all	stopped	containers
$ docker rm $(docker ps -q -f “status=exited”)

9.	Execute	a	new	process	in	an	existing	container:
	 #	Execute	and	access	bash	inside	a	WildFly	container
$ docker exec -it mywildfly bash

docker [CMD] [OPTS] [CONTAINER]

Command

daemon

attach

commit

cp

create

dif f

exec

export

kill

logs

pause

port

ps

rename

restart

rm

run

start

stats

stop

top

unpause

update

wait

Run	the	persistent	process	that	manages	containers

Attach	to	a	running	container	to	view	its	ongoing	output	or	to	
control	it	interactively

Create	a	new	image	from	a	container’s	changes

Copy	files/folders	between	a	container	and	the	local	filesystem

Create	a	new	container

Inspect	changes	on	a	container’s	filesystem

Run	a	command	in	a	running	container

Export	the	contents	of	a	container’s	filesystem	as	a	tar	archive

Kill	a	running	container	using	SIGKILL	or	a	specified	signal

Fetch	the	logs	of	a	container

Pause	all	processes	within	a	container

List	port	mappings,	or	look	up	the	public-facing	port	that	is	NAT-
ed	to	the	PRIVATE_PORT

List	containers

Rename	a	container

Restart	a	container

Remove	one	or	more	containers

Run	a	command	in	a	new	container

Start	one	or	more	containers

Display	one	or	more	containers’	resource	usage	statistics

Stop	a	container	by	sending	SIGTERM	then	SIGKILL	after	a	grace	
period

Display	the	running	processes	of	a	container

Unpause	all	processes	within	a	container

Update	configuration	of	one	or	more	containers

Block	until	a	container	stops,	then	print	its	exit	code

Description

5.	Tag	an	image:
 #	Creates	an	image	called	“myimage”	with	the	tag	“v1”	for	the	image	jboss/wildfly:latest
$ docker tag jboss/wildfly myimage:v1
 #	Creates	a	new	image	with	the	latest	tag
$ docker tag <image-name> <new-image-name>
 #	Creates	a	new	image	specifying	the	“new	tag”	from	an	existing	image	and	tag
$ docker tag <image-name>[:tag][username/] <new-image-name>.[:new-tag]

6.	Exporting	and	importing	an	image	to	an	external	file:
 #	Export	the	image	to	an	external	file
$ docker save -o <filename>.tar
 #	Import	an	image	from	an	external	file
$ docker load -i <filename>.tar

7	Push	an	image	to	a	registry:
$ docker push [registry/][username/]<image-name>[:tag]

1.2	Image	Related	Commands

Examples	
All	examples	shown	work	in	Red	Hat	Enterprise	Linux	

1.	Build	an	image	using	a	Dockerfile:
	 #Build	an	image
$ docker build -t [username/]<image-name>[:tag] <dockerfile-path>
	 #Build	an	image	called	myimage	using	the	Dockerfile	in	the	same	folder	where	the	command	was	executed
$ docker build -t myimage:latest .

3:	List	the	images:
$ docker images

4:	Remove	an	image	from	the	local	registry:
$ docker rmi [username/]<image-name>[:tag]

2.	Check	the	history	of	an	image:
	 #	Check	the	history	of	the	jboss/wildfly	image
$ docker history jboss/wildfly
	 #	Check	the	history	of	an	image
$ docker history [username/]<image-name>[:tag]

docker [CMD] [OPTS] [IMAGE]

build

history

images

import

info

inspect

load

pull

push

rmi

save

search

tag

connect

create

disconnect

inspect

ls

rm

Build	images	from	a	Dockerfile

Show	the	history	of	an	image

List	images

Create	an	empty	filesystem	image	and	import	the	contents	of	the	
tarball	into	it

Display	system-wide	information

Return	low-level	information	on	a	container	or	image

Load	an	image	from	a	tar	archive	or	STDIN

Pull	an	image	or	a	repository	from	the	registry

Push	an	image	or	a	repository	to	the	registry

Remove	one	or	more	images

Save	one	or	more	images	to	a	tar	archive		
(streamed	to	STDOUT	by	default)

Search	one	or	more	configured	container	registries	for	images

Tag	an	image	into	a	repository

Connects	a	container	to	a	network

Creates	a	new	network	with	the	specified	name

Disconnects	a	container	from	a	network

Displays	detailed	information	on	a	network

Lists	all	the	networks	created	by	the	user

Deletes	one	or	more	networks

1.3	Network	related	commands
docker network [CMD] [OPTS]

Command Description

Command Description

login

logout

create

inspect

ls

rm

events

inspect

Log	in	to	a	container	registry	server.	If	no	server	is	specified	then	
default	is	used

Log	out	from	a	container	registry	server.	If	no	server	is	specified	
then	default	is	used

Create	a	volume

Return	low-level	information	on	a	volume

Lists	volumes

Remove	a	volume

Get	real	time	events	from	the	server

Show	version	information

1.4	Network	related	commands

1.5	Volume	related	commands

1.6	Related	commands

Default is https://index.docker.io/v1/

docker volume [CMD] [OPTS]

2. Dockerfile

The	Dockerfile	provides	the	instructions	to	build	a	container	image	through	the		
`docker build -t [username/]<image-name>[:tag] <dockerfile-path>`	
command.	It	starts	from	a	previously	existing	Base	image	(through	the	FROM	clause)	
followed	by	any	other	needed	Dockerfile	instructions.	

This	process	is	very	similar	to	a	compilation	of	a	source	code	into	a	binary	output,	but	in	
this	case	the	output	of	the	Dockerfile	will	be	a	container	image.

Example Dockerfile
This	example	creates	a	custom	WildFly	container	with	a	custom	administrative	user.	It	also	

exposes	the	administrative	port	9990	and	binds	the	administrative	interface	publicly	through	
the	parameter	‘bmanagement’.

#	Use	the	existing	WildFly	image
FROM jboss/wildfly

#	Add	an	administrative	user
RUN /opt/jboss/wildfly/bin/add-user.sh admin Admin#70365 --silent

#Expose	the	administrative	port
EXPOSE 8080 9990

#Bind	the	WildFly	management	to	all	IP	addresses
CMD [“/opt/jboss/wildfly/bin/standalong.sh”, “-b”, “0.0.0.0”,
“-bmanagement”, “0.0.0.0”]

Command Description

Command Description

Command Description

	 #	Build	the	WildFly	image
$ docker build -t mywildfly .

	 #Run	a	WildFly	server
$ docker run -it -p 8080:8080 -p 9990:9990 mywildfly

	 #Access	the	WildFly	administrative	console	and	log	in	with	the	credentials	admin/Admin#70635
open http://<docker-daemon-ip>:9990 in	a	browser

Using the example Dockerfile

FROM

MAINTAINER

RUN

CMD

LABEL

EXPOSE

ENV

ADD

COPY

ENTRYPOINT

VOLUME

USER

WORKDIR

ARG

ONBUILD

STOPSIGNAL

Sets	the	base	image	for	subsequent

Sets	the	author	field	of	the	generated	images

Execute	commands	in	a	new	layer	on	top	of	the	current	image	and	
commit	the	results

Allowed	only	once	(if	many	then	last	one	takes	effect)

Adds	metadata	to	an	image

Informs	container	runtime	that	the	container	listens	on	the	speci-
fied	network	ports	at	runtime

Sets	an	environment	variable

Copy	new	files,	directories,	or	remote	file	URLs	from	into	the	
filesystem	of	the	container

Copy	new	files	or	directories	into	the	filesystem	of	the	container

Allows	you	to	configure	a	container	that	will	run	as	an	executable

Creates	a	mount	point	and	marks	it	as	holding	externally	mounted	
volumes	from	native	host	or	other	containers

Sets	the	username	or	UID	to	use	when	running	the	image

Sets	the	working	directory	for	any	RUN,	CMD,	ENTRYPOINT,	COPY,	
and	ADD	commands

Defines	a	variable	that	users	can	pass	at	build-time	to	the	builder	
using	--build-arg

Adds	an	instruction	to	be	executed	later,	when	the	image	is	used	
as	the	base	for	another	build

Sets	the	system	call	signal	that	will	be	sent	to	the	container	to	exit

Dockerfile	instruction	arguments
Command Description

$ mkdir -p www/

$ echo “Server is up” > www/index.html

$ docker run -d \
 -p 8000:8000 \
 --name=pythonweb \
 -v `pwd`/www:/var/www/html \
 -w /var/www/html \
 rhel7/rhel \
 /bin/python \
 -m SimpleHTTPServer 8000

$ curl <container-daemon-ip>:8000

$ docker ps
$ docker inspect pythonweb | less
$ docker exec -it pythonweb bash

Example: Running a web server container

#	Create	a	directory	(if	it	doesn’t	already	exist)

#	Make	a	text	file	to	serve	later

#	Run	process	in	a	container	as	a	daemon	
#	Map	port	8000	in	container	to	8000	on	host	
#	Name	the	container	“pythonweb”	
#	Map	container	html	to	host	www	directory	
#	Set	working	directory	to	/var/www/html	
#	Choose	the	rhel7/rhel	directory	
#	Run	the	Python	command	for	
		 a	simple	web	server	listening	to	port	8000

#	Check	that	the	server	is	working

#	See	that	the	container	is	running	
#	Inspect	the	container	
#	Open	the	running	container	and	look	inside

About the authors

Bachir Chihani, Ph.D.	holds	an	engineering	degree	from	Ecole	
Superieure	d’Informatique	(Algeria)	as	well	as	a	PhD	degree	in	
Computer	Science	from	Telecom	SudParis	(France).	Bachir	has	
worked	as	a	data	engineer,	software	engineer,	and	research	
engineer	for	many	years.	Previously,	he	worked	as	a	network	
engineer	and	got	a	CCNA	Cisco-certification.	Bachir	has	been	
programming	for	many	years	in	Scala/Spark,	Java	EE,	Android	
and	Go.	He	has	a	keen	interest	in	Open	Source	technologies	
particularly	in	the	fields	of	Automation,	Distributed	Computing	
and	Software/System	Design	and	he	likes	sharing	his	experience	
through	blogging.	

Bachir	authored	many	research	papers	in	the	field	of	Context-
Awareness	and	reviewed	many	papers	for	International	
conferences.	He	also	served	as	a	technical	reviewer	for	many	
books	including	Spring	Boot	in	Action	(Manning,	2016)	and	Unified	
Log	Processing	(Manning,	2016).

Rafael Benevides is	a	Director	of	Developer	Experience	at	Red	
Hat.	In	his	current	role	he	helps	developers	worldwide	to	be	more	
effective	in	software	development,	and	he	also	promotes	tools	
and	practices	that	help	them	to	be	more	productive.	He	worked	
in	several	fields	including	application	architecture	and	design.	
Besides	that,	he	is	a	member	of	Apache	DeltaSpike	PMC	-	a	Duke’s	
Choice	Award	winner	project.	And	a	speaker	in	conferences	like	
JUDCon,	TDC,	JavaOne	and	Devoxx
Twitter:	@rafabene
LinkdeIn:	https://www.linkedin.com/in/rafaelbenevides
www.rafabene.com.

